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Fracture mechanics of blunt cracks 
in a ductile steel 
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The propagation of blunt notches in stainless steel has been studied experimentally and analysed 
using generalized fracture mechanics (GFM), which takes account of inelastic and non-linear 
deformation. According to this theory, the critical apparent energy release rate, which is equivalent 
to Jc, is given by Jc = kl (So) c W0c for an edge crack of length c in a thin sheet ( plane stress), where 
kl (s0) is a dimensionless function of strain, s0, and Woo is the input energy density remote from the 
crack at the time of crack propagation. The validity of this equation was demonstrated for blunt 
cracks and the function kl (s0) evaluated. The value of Jc was measured for blunt cracks of 
different lengths and tip diameters, and also for different crack extensions. Jc was found to be 
independent of crack length for the smallest tip radius, but became systematically length- 
dependent as the radius increased. However, the dependence of Jc on crack length, tip radius and 
crack extension can be expressed by a single empirical function, as is suggested by GFM. The 
propagation of cracks from blunt notches in ductile materials can, therefore, be handled by 
fracture mechanics methods. 

1. In troduct ion  
Almost by definition, fracture mechanics analysis is 
restricted to the propagation of sharp cracks. One 
reason for this is that the crack-tip radius is assumed 
to be effectively zero when the relevant equations are 
derived and does not, therefore, feature explicitly in 
those equations. Those formulations of fracture mech- 
anics that are based upon energy balance, assume that 
an energy release rate in excess of the critical value is 
a sufficient condition for propagation, and this is only 
true as tip radius tends to zero. Equally, stress-field 
parameters like K~ are based upon the stress distribu- 
tion around a zero-radius crack. It is true that "crack 
blunting" is considered when discussing R-curves or 
when using Dugdale or crack opening displacement 
(COD) analyses [1], but it is not generally possible to 
retain geometry independence in the fracture mechan- 
ics parameters unless the crack is sharp. Conse- 
quently, the propagation of cracks which are blunt 
before the specimen is loaded has received little at- 
tention. 

This does not mean, however, that the subject is of 
no interest. Any crack propagating in a ductile solid 
must eventually become blunt, even if it was originally 
sharp, and this is particularly true of fatigue cracks. 
Similarly, if the solid is inhomogeneous on a coarse 
scale, as in a composite for instance, crack propaga- 
tion is always "blunt" rather than "sharp". Finally, the 
tearing of ductile materials from holes or notches is an 
example of blunt crack propagation and could have 
significance in engineering design and safety assess- 
ment. 

We have therefore studied the energy required to 
propagate blunt edge cracks or notches in plane stress 
(i.e. using thin sheets) as a function of crack length, tip 
radius and crack extension, and have sought to ana- 
lyse the results using generalized fracture mechanics. 
This allows us to derive a Jc value for each combina- 
tion of the variables employed and to rationalize the 
dependence of Jc upon those variables. 

2. Experimental procedure 
2.1. Materials and specimen preparation 
The material used in these experiments was an 18/8 
stainless steel of composition C 0.05%, Si 0.36%, Mn 
1.57%, S 0.02%, P 0.03%, Ni 9.28%, Cr 17.5%, Nb 
0.69%, remainder Fe. 

The steel was supplied as cold-rolled, softened and 
descaled sheet, approximately 0.91 mm thick. 

Wide dumb-bell specimens, 150 mm long by 50 mm 
wide, were cut out of the sheet with their long axes in 
the rolling direction. Single-edge notches of various 
lengths were machined into the dumb-bells half-way 
along their length and perpendicular to the tensile axis 
(see Fig. 1). Each notch was terminated with a drilled 
hole of specified radius to provide a well-characterized 
"blunt crack". Specimens were divided into five sets 
according to their crack-tip diameters, D. The blunt- 
ness of the cracks and the ductile nature of the steel 
ensured that propagation occurred only by slow con- 
trolled tearing of the material. 

To facilitate the study of "resistance curve" effects, 
a series of lines was engraved on each specimen at 
1 mm intervals ahead of, and perpendicular to, the 
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Figure 1 Test specimen showing edge crack and tip diameter. 

crack. This allowed the opera tor  to activate an "event 
marker"  to mark  the load-def lect ion curve at the 
momen t  the propagat ing  crack crossed each engraved 
line. 

2 .2 .  V a r i a b l e s  s t u d i e d  a n d  p r o c e d u r e  
Five different tip diameters were employed, ranging 
from 0 (fatigue crack)-2.0 mm. This gave five sets of 
specimens, each set having a single tip diameter. For  
each tip diameter (except zero) a range of  initial crack 
lengths was employed, from 5-15  mm. The details are 
given in Table I. Each set also contained an un- 
notched control  specimen. 

The edge-notched dumb-bell  specimens were de- 
formed monotonica l ly  in tension in an Inst ron 
Universal  Testing Machine  at a crosshead speed of 
0.5 mm m i n -  1 and the load-def lect ion curve recorded 
in the normal  way. The propagat ion  of the crack was 
observed through a cathetometer  and the event 
marker  actuated each time the propagat ing  tip crossed 
an engraved line. A typical set of s tress-strain curves 
obtained in this manner  is shown in Fig. 2. 

TABLE I Table of specimen dimensions 

Set Crack-tip Crack lengths (ram) 
diameter (mm) 

1 0.0 (fatigue crack) 15.0 
2 0.5 0.0 5.0 7.5 10.0 12.5 15.0 
3 1.0 0,0 5.0 7.5 10.0 12.5 - 
4 1.5 0.0 5.0 7.5 10.0 12.5 15.0 
5 2.0 0,0 5.0 7.5 10.0 12.5 15.0 
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Figure 2 Typical stress-strain curves for a set of edge-notched 
specimens with cracks of different lengths, c. Vertical marks show 
onset of crack growth and successive 1 mm increments of crack 
extension. 

3. Analysis and presentation of 
experimental data 

3.1. Eva lua t ion  of  the  f u n c t i o n  /(1 (~0) 
Generalized fracture mechanics ( G F M )  gives the fol- 
lowing equat ion for the "apparent  energy release rate" 
[2] 

- ( d E / d A )  = kl(go)C W o (1) 

where E is total energy, A is crack area, kl(eo) is 
a function of the strain, ~0, remote from the crack, c is 
the crack length, and W0 is the input energy density 
remote from the crack. 

Integrat ing this equation at constant  eo, Wo, we 
obtain 

- A E  = k l ( e o ) h W o c  2 (2) 

where h is the sheet thickness and AE is the input 
energy difference (at constant  load) between the speci- 
men containing a crack and the un-notched control  
specimen. This energy difference is obtained from the 
load extension curve (not the stress-strain curve) by 
measuring the area between the respective curves for 
notched and un-notched specimens up to any selected 
load value (see Fig. 3). By choosing different load 
values, AE can be found as a function of  load. The area 
under the load-extens ion  curve of the un-notched 
specimen, up to each selected load, when divided by 
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Figure 3 Calculation of energy change with respect to crack length. 
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Figure 4 Energy change at different stress levels as a function of the 
square of crack length, for 2.0 mm crack-tip diameter, showing 
linear dependence. 

the specimen volume (i.e. gauge length xwidth 
x thickness), is the appropriate value of Wo. Thus, all 
the terms in Equation 2 are known with the exception 
of k~ (Co). The strain, e0, has a one-to-one relationship 
to Wo, because both refer to the homogeneously de- 
formed region remote from the crack. This relation- 
ship is therefore found from the stress-strain curve of 
the un-notched control specimen allowing a value of 
~o to be assigned for each value of Wo. 

The AE value is conveniently found by cutting out 
and weighing the piece of graph paper defined by the 
area OAB in Fig. 3 and calibrating by reference to the 
weight of a known area (corresponding to a known 
energy) cut from the same sheet of paper. 

According to Equation 2, a plot of AE against c 2 
should give a straight line through the origin with 
a slope kl (eo)h W0. There will be a different line for 
each different load (and thus for each different 
Wo value). An example of such data is shown in Fig. 4. 
At the highest loads, fewer points are available be- 
cause specimens with longer cracks have already frac- 
tured. At the highest crack lengths and intermediate 
loads there is a tendency for AE to be too high. 
However, having regard to the possible sources of 
experimental error, especially specimen to specimen 
variability, a linear relationship provides a good ap- 
proximation even in the worst cases. For lower loads 
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Figure 5 The function k for D = 1.5 mm as a function of strain 
remote from the crack. 
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Figure 6 As Fig. 5 but for all crack-tip diameters, D: (0) 0, 
( x ) 0.5 mm, (�9 1.0 mm, (O) 1.5 ram, ( + ) 2.0 mm. 

(or Wo values) and for shorter cracks, the linearity is 
very good. 

From the slopes of the lines in Fig. 4 and the known 
values of Wo and h, it is possible to derive kl (~0) as 
a function of Wo and therefore of strain Co. An 
example of this functionality is given in Fig. 5. At 
infinitesimal strain, kl(ao) should tend to a value of 

as shown [2]. As observed previously for ductile 
metals [3] and various plastics and rubbers [4], the 
function kl (~o) rises from its infinitesimal strain value 
to a peak and then decays slowly with further strain. 
The peak strain corresponds to the yield point in the 
stress-strain curve. 

In Fig. 6 we have superimposed the kl(~o) data 
from all five sets of specimens (that is, all five tip 
diameters). There is some scatter but no systematic 
trend with tip diameter and we conclude, therefore, 
that the function kl (e0) is not sensitive to tip diameter. 
For the critical case we then have 

Jc = kl(~;o)cWoc (3) 

3 . 2 .  D e r i v i n g  Jc a n d  JR 
By definition, Jc is the critical value of the energy 
release rate at the point of propagation and JR is its 
value at any defined point during subsequent propa- 
gation. It is, therefore, possible (from Equation 3) to 
obtain these J parameters as the slopes of plots of 



k~(go)Wo~ against reciprocal crack length, where 
Wo~ is the appropriate value of Wo at the moment of 
interest (e.g. onset of propagation or some given crack 
extension). "Crack length" includes the crack exten- 
sion in these and subsequent plots. 

Fig. 7 Show two such plots for the case where 
D = 0.5 mm and crack extension Ac is (a) zero (the 
initiation case) and (b) 1 ram, respectively. Fig. 7a, 
where there is no crack extension, gives an excellent 
straight line through the origin, as expected from the 
theory. By contrast, Fig. 7b, with 1 mm crack exten- 
sion, appears to demonstrate a deviation from lin- 
earity. This trend is confirmed by the results for the 
same crack radius but even larger crack extensions of 
2, 3 and 4ram (Fig. 8a-c). In Fig. 8 we have not 
attempted to draw a straight line through the origin, 
but instead have connected each point to the origin by 
its own line. Remembering that the slope of each plot 
in Figs 7 and 8 equals the relevant value of J, this 
means that we are attributing the non-linearity of the 
plots to a variation of J~ or JR with crack length. The 
implied dependence upon crack length increases from 
no dependence at zero crack extension, to a maximum 
at the highest crack extension of 4 ram. 

In earlier publications, where crack radius was not 
a variable, the non-linearity demonstrated in Fig. 8 
was attributed to a finite-width effect [3, 5]. That is, 
the curve was held to be linear, giving constant J~ and 
a positive intercept on the abcissa which was inter- 
preted as the reciprocal width of the specimen. This 
seemed reasonable at the time, because the theory 
applies to an infinite plate and some finite-width cor- 
rection will be required for large-crack length. In the 
light of the present work, however, we now believe 
that this was a misinterpretation, and that the non- 
linearity of the curves in Fig. 8 arises from a genuine 
dependence of J~, JR upon crack length when non-zero 
crack radius is combined with non-zero crack exten- 
sion. As we shall see, this conclusion is forced upon us 
by the increasing deviation from linearity observed as 
the radius gets larger. 

An alternative, of course, would be to say that the 
theory no longer applies under these conditions. How- 
ever, as we shall see, G F M  actually predicts a depend- 
ence of J~, JR upon length for non-zero crack radius 
and crack extension, so that we proceed to derive 
crack-length dependent values for the J parameters. 

To complete the picture, Figs 9-11 give the data for 
tip diameters 1.0, 1.5 and 2.0 mm, showing the pro- 
gressive deviation from linearity with rising diameter 
and crack extension. For  the sake of clarity in these 
plots, we have not joined each point to the origin but 
have joined points for the same Ac by broken lines to 
indicate trends. 

Fig. 12 shows data for zero crack diameter (fatigue 
cracks), which were only obtained for a single crack 
length, namely 15 mm. Again joining each point to the 
origin to obtain a J value, we observe the familiar 
"resistance curve" effect in which JR rises with increas- 
ing crack extension until it levels off at an extension of 
3 -4  mm. 

It is, of course, possible to provide various cross- 
plots of the data for J to give, for example, R-curves at 
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Figure 7 Plot based on Equation 3 for crack-tip diameter of 
0.5 ram. The slope of the line gives Jc or JR. (a) Crack initiation, 
(b) crack extension of 1 ram. 
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Figure 8 As Fig. 7, but for other crack extensions of (a) 2.0 mm, 
(b) 3.0 mm, and (c) 4.0 mm. Note the increasing departure from 
linearity as crack extension increases. 
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crack extensions: ( � 9  0, ( x ) 1 ram, ( A ) 2 mm, ( �9 ) 3 mm, ( + ) 4 ram. 
Note the increasing departure from linearity as diameter and crack 
extension increase. 

each tip diameter. Several such curves are seen in 
Fig. 13, where the dependence of JR on diameter and 
crack extension is made explicit. Equally JR is plotted, 
for a fixed crack diameter of 0.5 mm, against crack 
length for five different crack extensions in Fig. 14. 
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4. Discussion and further  analysis 
of the results for JR 

It is clear from Figs 8a and 14 that the results tend to 
those expected as both tip diameter, D, and crack 
extension, Ac, tend to zero. That is, JR is independent 
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conciseness, Jc also represents JR 

J~ = J o ~ ( a / c , b / c , d / c . . .  ) (5) 

where Jo is some minimum crack propagation energy 
and ~b is the "loss function". The function, f, is in- 
volved because @ contains terms of the form df/dx and 
df/dy. For our present purpose, it is convenient to 
make Jo the J-value for D = 0 and Ac = 0. 

We see, therefore, that J~ can only be expected to be 
independent of crack length if all dimensions of the 
specimen other than crack length, are zero or infinite 
(and thus "unavailable" for dimensional analysis). For 
non-zero tip diameter we shall expect terms in D/c to 
be present in ~, and for non-zero crack extension, 
terms in Ac/c. 

Thus, in general, we would expect 

Jc = Jo G(D/c, Ac/c) (6a) 

of crack length for small D (say, 0.5 mm and below) 
and small crack extension, Ac (say 1.0mm and 
smaller). For D = 0.5 mm, an effect of crack length 
upon Ja begins to appear at short crack lengths when 
the crack extension is large. If we only had data for 
this diameter (or smaller) we might dismiss these 
crack-length effects as experimental scatter. As we 
move to larger crack diameters, however, it becomes 
increasingly obvious that Ja is no longer independent 
of crack length and that the R-curve phenomenon 
becomes more severe as the tip diameter rises. 

The question arises as to whether JR retains any 
physical significance under these conditions. We be- 
lieve that the systematic nature of the dependencies of 
Ja upon the geometrical parameters of crack length, 
tip diameter and crack extension suggest that it does 
retain such significance, and that the significance fol- 
lows naturally from the G F M  formulation of fracture 
mechanics. 

In the derivation of Equation 3, G F M  begins by 
expressing the input energy density at a point P in the 
stress field, as [2] 

W(P)  = Wof (X /c ,  Y/c, a/c, b/c, d/c . . . .  ) (4) 

,where X, Yare the co-ordinates of point P; a, b, d, etc. 
are available dimensions of the specimen; and c is 
a selected dimension, usually (but not necessarily) the 
crack length. Usually, for simplicity, we specify that 
the specimen is an infinite sheet of uniform thickness 
containing a centre crack of length 2c. This means that 
the only available dimension other than c is the thick- 
ness. For  plane strain or plane stress extremes, we may 
further simplify by making the thickness infinite or 
tending-to-zero as the case may be. This leaves no 
available dimension other than the crack length, so 
that all terms vanish from the bracket in Equation 4 
except those involving the co-ordinates X and Y. 

On the other hand, if there are available dimensions 
in the system, such as a non-zero crack-tip diameter, 
and a non-zero crack extension, it is clear that they 
must affect the value of the function f (though we 
cannot tell theoretically in what manner). 

The funct ionfcarr ies  through into the final expres- 
sion for J~ or JR in the following form [1], where, for 

Alternatively, this is equivalent to 

J~ = JoH(D/c,  Ac/D) (6b) 

where G, H are functions, with the further proviso that 
the new functions G and H must tend to unity when 
D and Ac both tend to zero, leaving Jc equal to its 
basic value Jo for sharp cracks and zero crack exten- 
sion. 

A possible explicit form of Equation 6 is 

Jr - Jo = A(n + [D/c])P 

x {m + [ac/ (D + e)]}q(7) 

where n is a constant to prevent J - Jo going to zero 
at zero D and non-zero Ac, m is a constant to 
prevent J - J0 going to zero at zero Ac and 
non-zero D, e is a constant to prevent J - Jo 
going to infinity at zero D, and p and q are 
further constants. 

The form of the function chosen is not altogether 
arbitrary. The constants n, m and e are required by the 
boundary conditions, and only their values remain 
adjustable. The exponents p and q simply recognize 
that there is no reason to expect linearity in either the 
diameter-dominated or the extension-dominated 
term. 

Using a process of trial and error, facilitated by 
a spreadsheet plotting facility (Quattro Pro by 
Borland), it was possible rapidly to run through 
a range of possible values for n, m, e, p and q, to see 
which values would allow all data points, for all crack 
lengths, tip diameters and crack extensions, to be 
displayed as a single curve. 

The best fit we have been able to find, without 
departing from the basic simplicity of Equation 7, 
is to set the various constants to the following 
values: Jo = 234 J m-2 ,  A = 1.6 J m-2 ,  n = 0.1, 
m = 4.0, e = 0.5 mm, p = 1.5, q = 2.5. 

In principle, Jo is an experimentally measured para- 
meter, namely the Jc value for zero diameter (sharp) 
cracks. This value was 155 J m-2 ,  but the higher value 
of 234 j m - 2  has been chosen to improve the fit be- 
tween theory and experiment overall. 
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Fig. 15 is a plot of (J~ - Jo) (Jm-2) as ordinate 
against the "geometrical function" 

1.6(0.1 + [D/c])ls{4 + [ac/(O + 0.5)]} 2"5 (8) 

using the adjustable parameter values given above. It 
will be seen to represent the total data collection to 
a fair approximation over the whole range of vari- 
ables. Although the geometrical function (Equation 8) 
does not go precisely to zero for zero D and Ac, its 
value under these conditions is negligible when com- 
pared with other conditions. 

It should be emphasized that the geometrical func- 
tion chosen is not necessarily the only, or best, func- 
tion to represent the data. What it does demonstrate is 
that the variation of J with the variables of crack 
length, tip diameter and crack extension, can plausibly 
be represented by a single, rational, non-dimensional 

function of those variables, and with one-to-one lin- 
earity. 

5. Conclusion 
The fracture mechanics parameter Jc can be defined, 
and therefore measured, for the propagation of blunt 
notches or cracks using generalized fracture mechan- 
ics. J~ exhibits normal "crack resistance" effects, rising 
with crack extension, but is only independent of crack 
length for zero crack-tip diameter. 

When the crack-tip diameter is non-zero, there is 
a complex but systematic dependence of J~ upon crack 
length, tip diameter and crack extension. To a fair 
degree of approximation, this complex dependence 
can be represented by a single function of the non, 
dimensional geometrical variables which hasa simple 
form. 

This work therefore emphasizes the role of the geo- 
metrical variables in determining J~ for a given ductile 
material. These variables exert their influence in non- 
dimensional forms, namely as the ratios of the "avail- 
able dimensions" of the specimen. Thus it becomes 
possible to extend fracture mechanics treatments to 
cases which have not previously been amenable to 
this form of analysis. 
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